

Mark Scheme (Results)

October 2023

Pearson Edexcel International Advanced Level In Statistics S1 (WST01) Paper 01 Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Edexcel and BTEC Qualifications

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2023 Question Paper Log Number 74325 Publications Code WST01_01_rms_20240118 All the material in this publication is copyright © Pearson Education Ltd 2023

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if **the candidate's response is not worthy of credit** according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

General Instructions for Marking

The total number of marks for the paper is 75.

Edexcel Mathematics mark schemes use the following types of marks:

`M' marks

These are marks given for a correct method or an attempt at a correct method. In Mechanics they are usually awarded for the application of some mechanical principle to produce an equation, e.g. resolving in a particular direction; taking moments about a point; applying a suvat equation; applying the conservation of momentum principle; etc.

The following criteria are usually applied to the equation.

To earn the M mark, the equation

- (i) should have the correct number of terms
- (ii) each term needs to be dimensionally correct

For example, in a moments equation, every term must be a 'force x distance' term or 'mass x distance', if we allow them to cancel 'g' s.

For a resolution, all terms that need to be resolved (multiplied by sin or cos) must be resolved to earn the M mark.

'M' marks are sometimes dependent (DM) on previous M marks having been earned, e.g. when two simultaneous equations have been set up by, for example, resolving in two directions and there is then an M mark for solving the equations to find a particular quantity – this M mark is often dependent on the two previous M marks having been earned.

'A' marks

These are dependent accuracy (or sometimes answer) marks and can only be awarded if the previous M mark has been earned. e.g. MO A1 is impossible.

'B' marks

These are independent accuracy marks where there is no method (e.g. often given for a comment or for a graph).

A and B marks may be f.t. – follow through – marks.

General Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod means benefit of doubt
- ft means follow through
 - o the symbol $\sqrt[4]{}$ will be used for correct ft
- cao means correct answer only
- cso means correct solution only, i.e. there must be no errors in this part of the question to obtain this mark
- isw means ignore subsequent working

- awrt means answers which round to
- SC means special case
- oe means or equivalent (and appropriate)
- dep means dependent
- indep means independent
- dp means decimal places
- sf means significant figures
- * means the answer is printed on the question paper
- means the second mark is dependent on gaining the first mark

All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.

If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

Ignore wrong working or incorrect statements following a correct answer.

Question Number		Scheme	Marks
1 (a)	0.7	win 0.6 win 0.4 lose 0.2 win 0.8 lose 0.6 win 0.6 win 0.6 win 0.6 win lose 0.2 lose 0.8 lose 0.8 lose	B1 B1 B1
(b)	0.7×0.6	6 = 0.42 oe	(3) M1 A1 (2)
(c)	$'0.42'+(0.7\times'0.4'\times'0.2')+('0.3'\times'0.2'\times'0.6')=0.512$ oe		
(d)	<u>'0.42'</u> '0.512'	= 0.8203 oe awrt 0.820	(2) M1 A1ft
(e)	<u>'0.42'+</u>	$\frac{(0.7 \times '0.4' \times '0.2')}{0.7} = 0.68 \text{ oe } \text{ or } 0.6 + '0.4' \times '0.2' = 0.68 \text{ oe}$	(2) M1 A1 (2)
		Notes	Total 11
(a)	B1	For 0.3 in the correct place on the first branch and 0.4 in the correct place on the second	ond branch
	B1	For 0.2 and 0.8 in the correct place in the second branch	
	B1	For 0.2, 0.8, 0.6 and 0.4 in the correct place in the third branch	
		NB ISW any extra branches drawn on the tree diagram	
(b)	M1	For 0.7×0.6	
	A1	Cao	
(c)	M1	For '0.42'+ $(0.7 \times '0.4' \times '0.2')$ + ('0.3'×'0.2'×'0.6') Follow through part (b) and th diagram	eir tree
	A1	Cao	
(d)	M1	For $\frac{\text{part (b)}}{\text{part (c)}}$ provided the answer is a probability or ft their tree diagram	
	A1ft	awrt 0.820 or ft part (b) and part (c) provided the answer is a probability or ft their tre Allow 0.82 If ft and a decimal answer is given then this must be at least 3sf	
(e)	M1	For a correct ratio of probabilities. Follow through their part (b) and their tree diagram $0.6 + 0.4 \times 0.2$ ft their tree diagram	m or
		Cao Allow 0.680	

Number		Scheme Ma		ırks	
2 (a)(i)	$Q_2 = 57$		B1		
(ii)	$Q_1 = 45$		B1 B1		
(11)				(3)	
(b)	'63'+1.5	5(63'-45')[=90] or $45'-1.5(63'-45')[=18]$	M1	(5)	
		= 90 or $= 18$	A1ft		
	16 and 9	4 [are outliers]*	A1*		
				(3)	
(c)	1 1	ot drawn with 2 whiskers	M1		
	Q_1, Q_2	and Q_3 plotted correctly	A1ft		
		s drawn correctly	Alft		
	Outliers	marked at 16 and 94	Al		
(1)	T1	B - /O for F - 1	D1&	(4)	
(d)		lian/Q ₂ for February is less/lower than the median/Q ₂ for December oe R/range for February is less/lower than December (allow similar) oe	B1ft B1ft		
		rrect interpretation of either average or spread	DIII		
	 the weights of February are less varied/little change in variability than the weights of December oe They weighed more later in the year oe Most of the distribution has shifted right, implying that most kangaroos have gained weight but some appear to have lost weight. 				
				(3)	
		Notes	Total	13	
(a)(i)	B1	Cao			
(a)(1) (ii)	B1	Сао			
(ii)	B1 B1	Cao Cao			
	B1 B1 M1	Cao Cao For use of either $Q_3 + 1.5(Q_3 - Q_1)$ or $Q_1 - 1.5(Q_3 - Q_1)$ ft part (a)			
(ii)	B1 B1	CaoCaoFor use of either $Q_3 + 1.5(Q_3 - Q_1)$ or $Q_1 - 1.5(Q_3 - Q_1)$ ft part (a)For either 90 or 18 ft part (a)			
(ii) (b)	B1 B1 M1 A1ft	Cao Cao For use of either $Q_3 + 1.5(Q_3 - Q_1)$ or $Q_1 - 1.5(Q_3 - Q_1)$ ft part (a))		
(ii)	B1 B1 M1 A1ft A1* M1	CaoCaoFor use of either $Q_3 + 1.5(Q_3 - Q_1)$ or $Q_1 - 1.5(Q_3 - Q_1)$ ft part (a)For either 90 or 18 ft part (a)For identifying both outliers with no incorrect/missing working (This can ft part (a))A boxplot drawn with 2 whiskers)		
(ii) (b)	B1 B1 M1 A1ft A1*	CaoCaoFor use of either $Q_3 + 1.5(Q_3 - Q_1)$ or $Q_1 - 1.5(Q_3 - Q_1)$ ft part (a)For either 90 or 18 ft part (a)For identifying both outliers with no incorrect/missing working (This can ft part (a)))		
(ii) (b)	B1 B1 M1 A1ft A1* M1 A1ft	CaoCaoFor use of either $Q_3 + 1.5(Q_3 - Q_1)$ or $Q_1 - 1.5(Q_3 - Q_1)$ ft part (a)For either 90 or 18 ft part (a)For identifying both outliers with no incorrect/missing working (This can ft part (a))A boxplot drawn with 2 whiskersFor Q_1 , Q_2 and Q_3 plotted correctly ft part (a))		
(ii) (b)	B1 B1 M1 A1ft A1* M1 A1ft A1ft	CaoCaoFor use of either $Q_3 + 1.5(Q_3 - Q_1)$ or $Q_1 - 1.5(Q_3 - Q_1)$ ft part (a)For either 90 or 18 ft part (a)For identifying both outliers with no incorrect/missing working (This can ft part (a))A boxplot drawn with 2 whiskersFor Q_1 , Q_2 and Q_3 plotted correctly ft part (a)Whiskers drawn at 18 and 90 ft part (b) or 23 and 86		t if	
(ii) (b) (c)	B1B1M1A1ftA1*M1A1ftA1ftA1ft	CaoCaoFor use of either $Q_3 + 1.5(Q_3 - Q_1)$ or $Q_1 - 1.5(Q_3 - Q_1)$ ft part (a)For either 90 or 18 ft part (a)For identifying both outliers with no incorrect/missing working (This can ft part (a))A boxplot drawn with 2 whiskersFor Q_1 , Q_2 and Q_3 plotted correctly ft part (a)Whiskers drawn at 18 and 90 ft part (b) or 23 and 86Outliers marked at 16 and 94A correct comparison of medians ft their boxplot drawn or part (a) (No figures are requoted then they need to be correct ft) Must mention the word median/ Q_2 A correct comparison of range/IQR ft their boxplot drawn or part (a) (No figures are requoted then they need to be correct ft) Must mention either IQR or range	equired bu e required		
(ii) (b) (c)	B1B1M1A1ftA1*M1A1ftA1ftB1ft	CaoCaoFor use of either $Q_3 + 1.5(Q_3 - Q_1)$ or $Q_1 - 1.5(Q_3 - Q_1)$ ft part (a)For either 90 or 18 ft part (a)For identifying both outliers with no incorrect/missing working (This can ft part (a))A boxplot drawn with 2 whiskersFor Q_1 , Q_2 and Q_3 plotted correctly ft part (a)Whiskers drawn at 18 and 90 ft part (b) or 23 and 86Outliers marked at 16 and 94A correct comparison of medians ft their boxplot drawn or part (a) (No figures are requoted then they need to be correct ft) Must mention the word median/ Q_2 A correct comparison of range/IQR ft their boxplot drawn or part (a) (No figures are reduced then they need to be correct ft) Must mention the word median/ Q_2	equired bu e required		

Question Number		Scheme	Marks
3(i)(a)	w = 0.15	5	B1
	x = 0.7 -	-0.15 = 0.55	B1
	y = 0.65	5 - 0.55 = 0.1	B1
	z = 1 - 0	.15 - 0.55 - 0.1 = 0.2	B1
			(4)
(b)	'0.15'+'	0.1'='0.25'	B1ft
			(1)
(c)	$[P(C) \times I]$	$P(O)$] = '0.65'×'0.7' ≠ '0.55'[= $P(C \cap O)$] or $[P(C \mid O) =]\frac{'0.55'}{'0.7'} \neq '0.65'$ [= $P(C)$] oe	M1
	'0.455' <i>∓</i>		A1*
			(2)
3 (ii) (a)	$P(F \cup$	$H) = \frac{2}{7} + \frac{1}{4} = \left \frac{15}{28} \right $	B1
			(1)
(1)	5 2	$\mathbf{P}(C) = \frac{2}{2} \mathbf{P}(C)$	
(b)	$\frac{-}{8} = \frac{-}{7} + \frac{1}{2}$	$P(G) - \frac{2}{7}P(G)$	M1
		5 2	
	P(G) =	$\frac{\frac{5}{8} - \frac{2}{7}}{1 - \frac{2}{7}} = \frac{19}{56} \div \frac{5}{7}$	dM1
	1(0)-	$1-\frac{2}{56}$ 56 7	ulvii
		1	
	P(G) =	<u>19</u>	A1
	(-)	40	
	Г	2 10 7 10	(3)
(c)	$P(F \cap$	$G) = \frac{2}{7} \times \frac{19}{40} = \frac{19}{140}$	B1ft
	L	/ 40 _140	(1)
			(1) Total
		Notes	10tal 12
(i)(a)	B1	w = 0.15 If answer is given in the script and the Venn diagram, then mark the script	
	B1	x = 0.55 If answer is given in the script and the Venn diagram, then mark the script	
	B1	y = 0.1 If answer is given in the script and the Venn diagram, then mark the script	
	B1	z = 0.2 If answer is given in the script and the Venn diagram, then mark the script	
(1-)	D164	For $w + y = 0.25'$ follow through their w and their y (You will need to check for their	r values)
(b)	B1ft	provided this is a probability	
(c)	M1	For $'(x+y)' \times '(w+x)' \neq 'x'$ or $\frac{'x'}{'w+x'} \neq 'x+y'$ ft their w, x and y	
	A1*	A fully correct solution with values evaluated and no errors ft their <i>w</i> , <i>x</i> and <i>y</i>	
(ii) (a)	B1	For $\frac{15}{28}$ oe Allow awrt 0.536	
(b)	M1	For use of $P(F \cup G) = P(F) + P(G) - P(F) \times P(G)$	
		Dependent on M1. For a correct rearrangement to find P(G) e.g. $\left(\frac{5}{8} - \frac{2}{7}\right) \div \left(1 - \frac{2}{7}\right)$ Alle	
	dM1		
		$\frac{19}{56} = \frac{5}{7} P(G)$ May be implied by $\frac{19}{40}$	
		<u>56</u> / <u>40</u>	
	A1	For $\frac{19}{40}$ oe	
	D184	For $\frac{19}{140}$ or or $\frac{2}{7} \times P(G)$ evaluated correctly and where $P(G)$ is a probability	
(c)	B1ft	1.01 - 1.00 = 7 - 7 (G) evaluated concerns and where $T(G)$ is a probability	

Question		Scheme	Marks	
Number				
4 (a)	$E\left(\frac{1}{X}\right)$	$=1\times\frac{1}{10}+\frac{1}{2}\times\frac{1}{5}+\frac{1}{3}\times\frac{3}{10}+\frac{1}{4}\times\frac{2}{5}=\frac{2}{5}*$	B1*	
			(1)	
(b)	$E\left(\left(\frac{1}{X}\right)^{2}\right) = 1^{2} \times \frac{1}{10} + \left(\frac{1}{2}\right)^{2} \times \frac{1}{5} + \left(\frac{1}{3}\right)^{2} \times \frac{3}{10} + \left(\frac{1}{4}\right)^{2} \times \frac{2}{5}\left[=\frac{5}{24}\right]$			
	$\operatorname{Var}\left(\frac{1}{\lambda}\right)$	$\left(\frac{1}{3}\right) = \frac{5}{24} - \left(\frac{2}{5}\right)^2 = \frac{29}{600}$	M1 A1	
(c) (i)	$\begin{bmatrix} E(Y) = \end{bmatrix} 12 $ B1			
	-			
(ii)	[Var(Y	$Y = \left[30^{2} \text{ Var}\left(\frac{1}{X}\right) \right] = \frac{87}{2} \text{ or If } y : 30 \text{ 15 10 } 7.5 \text{ then } \left[\text{Var}(Y) = \right] \frac{375}{2} - 12^{2} = \frac{87}{2}$	M1 A1	
		20	(3)	
(d)	[Y < 20]	$0 \Rightarrow]\frac{30}{X} < 20 \Rightarrow X > 1.5$ or $y: 30$ 15 10 7.5	M1	
	P(Y < Z)	$20) = P(X > 1.5) = \frac{9}{10}$	A1	
	$\left[P(X < 3 Y < 20) = \right] \frac{P(X = 2)}{P(X > 1.5)} = \frac{\frac{1}{5}}{\frac{9}{(\frac{9}{10})}} = \frac{2}{9} \text{ or } \left[P(X < 3 Y < 20) = \right] \frac{P(Y = 15)}{P(Y < 20)} = \frac{\frac{1}{5}}{\frac{9}{(\frac{9}{10})}} = \frac{2}{9} \left \begin{array}{c} dM1 & A1 \\ A1 \\ A1 \\ \end{array} \right $			
			(5)	
		Notes Value given, so must see sight of a correct expression, with no incorrect working seen	Total 12	
(a)	B1*	equivalent expressions.)	`	
(b)	M1 For attempt at an expression for $E\left(\left(\frac{1}{X}\right)^2\right)$ with at least 3 correct terms			
	(Allow equivalent expressions.) May be embedded in a correct expression for $Var(X)$			
	M1	For a correct expression for $\operatorname{Var}\left(\frac{1}{X}\right)$ (Need not be simplified) ft a stated value of E	$\left(\left(\frac{1}{X}\right)^2\right)$	
	A1	Cao Allow awrt 0.0483		
(c) (i)	B1	For $[E(Y)] = 12$		
(ii)	M1	For correct use of $30^2 \operatorname{Var}\left(\frac{1}{X}\right)$ ft their $\operatorname{Var}\left(\frac{1}{X}\right)$ or $\frac{375}{2} - 12^2$ (May be implied by $\frac{87}{2}$	oe)	
	A1	For $[\operatorname{Var}(Y) =]\frac{87}{2}$ oe		
(d)	M1	For a correct inequality for $Y < 20$ or all 4 values of Y found (these may be seen in p	art (c))	
		For P(Y < 20) = $\frac{9}{10}$ (May be seen as the denominator (e.g 0.2 + 0.3 + 0.4 oe) in a rational equation of the second		
	A1	probabilities and scores M1A1)		
		Dependant on 1 st M1 For $\frac{P(X=2)}{P(X>1.5)}$ or $\frac{P(Y=15)}{P(Y<20)}$ Allow $\frac{P(1.5 < X < 3)}{P(X>1.5)}$		
	dM1	$P(X > 1.5) \qquad P(Y < 20) \qquad P(X > 1.5)$ or a correct ratio of probabilities ft P(Y < 20)		
	A 1	For a correct numerator		
	A			
	A1 A1	For $\frac{2}{9}$ oe (Allow a decimal answer that is 3sf or better e.g. 0.222)		

Question Number		Scheme	Marks
5 (a)	$X \sim N(210, 25^2)$		
	$P(X < 240) = P\left(Z < \frac{240 - 210}{25}\right) [= P(Z < 1.2)]$		
		= 0.8849*	A1*
			(2)
(b)	P(190 <	$X < 240$ = 0.8849 - P $\left(Z < \frac{190 - 210}{25}\right)$ [= 0.8849 - P(Z < -0.8)]	M1
	0.8849 0.673	-0.2119 = 0.673 awrt	A1
			(2)
(c)	$\frac{210+k}{25}$	$\frac{-210}{5} = 1.96$ or $\frac{210 - k - 210}{25} = -1.96$	M1 B1
	<i>k</i> = 49	awrt 49	A1
		G 21 0	(3)
(d)	P(X <	$S) = 0.15 \Longrightarrow \frac{S - 210}{25} = -1.0364$	M1 B1
	S = 184	25	A1
			(3
(e)	$Y \sim N(x)$	(μ, σ^2)	
	$P(Y < 152) = 0.05 \Longrightarrow \frac{152 - \mu}{\sigma} = -1.6449$		M1 A1
	$P(Y > 180) = 0.40 \Longrightarrow \frac{180 - \mu}{\sigma} = 0.2533$		
	$28 = 1.8982\sigma$		dM1
	$\sigma = 14.75$ and $\mu = 176.26$		A1
			(5)
()		Notes	Total 15
(a)	M1	For standardising using 240, 210 and 25	
(b)	A1* M1	Cao As the answer is given then no incorrect working should be seen For standardising using 190/230, 210 and 25 and subtracting from 0.8849 May be in $\Phi(1.2) + \Phi(0.8) - 1$ or 0.8849 + 0.7881 - 1	mplied by
	A1	awrt 0.673	
(c)	M1	For standardising and setting equal to a z value, where $1.9 < z < 2$	
(-)	B1	For $ z = 1.96$ or better	
	A1	awrt 49	
(d)	M1	For standardising using S (allow any letter) and setting equal to a z value, where 1 <	7<11
(u)	B1	For $z = -1.0364$	
	A1	awrt 184	
		For a correct method to form an equation in μ and σ set equal to a z value, where	;
(e)	M1	-1.6 < z < -1.7 or $0.2 < z < 0.3$ (Signs must be compatible)	
	A1	For a correct equation for $P(Y < 152)$	
	A1	For a correct equation for $P(Y > 180)$	
	1		
	dM1	Dependent on previous M mark. For solving the 2 equations simultaneously. If answincorrect then working must be shown. May be implied by $\sigma = awrt 14.8$ and $\mu =$	

Question Number			Scheme		Marks
6 (a)(i)	x = 1.2 +	x = 1.2 + 0.2(1.4x + 1.5) o.e or $y = 1.4(1.2 + 0.2y) + 1.5$ o.e		.e	M1
	$x = \frac{25}{12} \qquad y = \frac{53}{12}$		A1A1		
(ii)	$\left[\sum x=\right]$	$\frac{25}{12} \times 12 [= 25]$			A1*
		((4)
(b)		$\left \left(\frac{53}{12} \right) \right \times 12 = 53$			M1A1ft
	$S_{xy} = \frac{69}{60}$	$\frac{61}{0} - \frac{(25 \times 53')}{12} = 5.6$			M1 A1
			I	Ι	(4)
(c)	$\frac{'5.6'}{S_{xx}} = 1$.4 and $\frac{5.6'}{S_{yy}} = 0.2$	V 1.4 0.2	$\frac{S_{xy}}{S_{xx}} = 1.4 \text{ and } \frac{S_{xy}}{S_{yy}} = 0.2$	M1
		and $S_{yy} = 28$	$\frac{5.6}{\frac{5.6}{\sqrt{1.4 \times 0.2}}}$	$r^2 = 1.4 \times 0.2$	A1
	$r = \frac{'5.6'}{\sqrt{'4' \times '28'}} = 0.5291$		$\sqrt{1.4 \times 0.2} = 0.5291$		M1 dA1
				awrt 0.529	(4)
			Notes		Total 12
(a)(i)	M1 For either of the two equations o.e or an attempt to solve the two equations simultaneously. May be implied by $x = \frac{25}{12}/2.08$ or better or $y = \frac{53}{12}/4.42$ or better				
	A1	For either $x = \frac{25}{12} / 2.08$ c	or better or $y = \frac{53}{12} / 4.42$ or	or better or better (May be written as a co	
	A1			or better (May be written as a co	oordinate)
		NB This is M1 on EPEN			<u> </u>
(ii)	A1*			g. $\sum x = 14.4 + 0.2(1.4\sum x + 18)$ e seen. NB Working must be sh	
			s meoneet working must be	seem the working must be sit	0 11 II
(1.)	3.41	For $\left(\frac{53}{12}\right)' \times 12$ ft their	y coordinate.		
(b)	M1	For $\left(\frac{53}{12}\right)' \times 12$ ft their Allow use of $\sum y$ rather	than \overline{y} e.g. $\sum y = 1.4(14)$		
(b)	M1 A1ft	For $\left(\frac{53}{12}\right)' \times 12$ ft their Allow use of $\sum y$ rather	than \overline{y} e.g. $\sum y = 1.4(14)$	$4.4 + 0.2 \sum y + 18$ oe wer of exactly 5.6 implies M1A1)
(b)		For $\left(\frac{53}{12}\right)' \times 12$ ft their Allow use of $\sum y$ rather For $\sum y = 53$ or ft their	than \overline{y} e.g. $\sum y = 1.4(14)$ y coordinate \times 12 (An answer		
(b)	A1ft	For $\left(\frac{53}{12}\right)' \times 12$ ft their Allow use of $\sum y$ rather For $\sum y = 53$ or ft their	than \overline{y} e.g. $\sum y = 1.4(14)$ y coordinate \times 12 (An answer	wer of exactly 5.6 implies M1A1	

(c)	M1	For use of the gradient to find S_{xx} and S_{yy} ft their S_{xy} or use of $\frac{S_{xy}}{\sqrt{\frac{S_{xy}}{1.4} \times \frac{S_{xy}}{0.2}}}$
		or setting both $\frac{S_{xy}}{S_{xx}}$ and $\frac{S_{xy}}{S_{yy}}$ equal to their respective gradients
	A1	$S_{xx} = 4 \text{ and } S_{yy} = 28 \text{ or } \frac{S_{xy}}{\frac{S_{xy}}{\sqrt{1.4 \times 0.2}}} \text{ or } \frac{\left(S_{xy}\right)^2}{S_{xx} \times S_{yy}} = 1.4 \times 0.2$
		For a correct expression for r ft their S_{xy} , S_{xx} and S_{yy} or $\sqrt{1.4 \times 0.2}$ If answer is incorrect then
	M1	you must see their stated values substituted into a correct expression for r. An answer of $\frac{\sqrt{7}}{5}$
		implies M1A1M1 only
	dA1	Dependant on all previous marks being awarded. awrt 0.529